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Problem Statement

How can we enhance discoverability with modern causal Al?

Discoverability is the ability to find previously unknown reliable causal relationships,
or lack thereof, in correlational data.

Reliability can be measured by the statistical likelihood that a suggested relationship
holds true.
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Patterns can be misleading;:

Sale of Ice Cream e Cosrelation m— Forest Fires
Model
$100 240
$50 12.0
$25 6.0

Dec Jan Feb March Aprii May June July Aug Sep Oct Nov
Time

Figure 1: Ice cream causes forest fires?[1]
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Patterns can be misleading;: Critical areas:
Sale of Ice Cream e C”;;Z':;"" m— Forest Fires o Healthcare
$100 240 @ Education
@ Environmental science
$50 12.0 )
@ Crime
$25 6.0

Dec Jan Feb March Aprii May June July Aug Sep Oct Nov
Time

Figure 1: Ice cream causes forest fires?[1]
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Patterns can be misleading;: Critical areas:

Correlation e Forest Fires o H ea |t h care

Sale of Ice Cream e
Model

$100 240 @ Education

@ Environmental science
$50 12.0

e Crime
Experiments can be:
$25 6.0
Dec Jan Feb March April May June July Aug Sep Oct Nov o COStly
Time

) . @ Impractical
Figure 1: Ice cream causes forest fires?[1] .
@ Unethical
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Fujitsu Causal Discovery




Tools

Fujitsu Causal Discovery

DirectLINGAM




DirectLINGAM Overview

Causal inference algorithm [2]

x0 | x1 | x2 | x3
1534113 |0.1
26 35|16 0.8
1213411306
1.7 13515 |07
1234113 |0.1
17135115108
1513411309

SOk W N +R O

Table 1: Multivariate data

Figure 2: Causal graph
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DirectLINGAM Assumptions
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DirectLINGAM Assumptions

@ Linearity

0.00 025 050 0.75 1.00
parent

Figure 3: child = a * parent + noise
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DirectLINGAM Assumptions
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@ Linearity
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@ Non-Gaussianity
Figure 3: Non-Gaussian distribution
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Figure 4. Gaussian distribution
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DirectLINGAM Assumptions

@ Linearity
@ Non-Gaussianity

o Acyclicity

Figure 3: A directed acyclic graph
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DirectLINGAM Assumptions

@ Linearity
True Relationship  Observed Relationship
o Non-Gaussianity e
o Acyclicity ooQ
OBNONOZ20)
@ No hidden confounders

Figure 3: Confounders in causal relationships
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DirectLINGAM Assumptions

Linearity

@ Non-Gaussianity
“[DirectLiINGAM] is guaranteed to con-

verge to the right solution within a small
fixed number of steps if the data strictly
follows [these assumptions].” [2]

Acyclicity

No hidden confounders

@ Infinite data
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DirectLINGAM Breakdown

© Create hierarchy

@ Find variable relationships [3]
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DirectLINGAM Breakdown

© Create hierarchy

@ Find variable relationships [3]

cake
cat
little outfits for a cat
happiness
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DirectLINGAM Breakdown

=

© Create hierarchy

@ Find variable relationships [3]

cake
: cat e
little outfits for a cat - ¢ *\-"ﬂ
happiness -~ & 7'
) N :
-~

v ™

Figure 3: Example relationships
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Fujitsu Causal Discovery

Fujitsu Causal Discovery = DirectLINGAM + Conditions

Discoverability 8



Fujitsu Causal Discovery

Fujitsu Causal Discovery = DirectLINGAM + Conditions

(a) 'cat’ <1 A 'cake' >3
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Fujitsu Causal Discovery

Fujitsu Causal Discovery = DirectLINGAM + Conditions

(a) 'cat’ <1 A 'cake' >3 (b) 'little outfits for a cat’ < 1
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Fujitsu Causal Discovery

Fujitsu Causal Discovery = DirectLINGAM + Conditions

(a) 'cat’ <1 A 'cake' >3 (b) 'little outfits for a cat’ < 1

= Fill gaps left by DirectLINGAM
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© Project Overview
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Guiding Question

Q: How do we quantify reliability?




Project Components

@ Impact of assumption violations
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Project Components

@ Impact of assumption violations

@ Detect violations
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Project Components

@ Impact of assumption violations
@ Detect violations

@ Create scoring metric
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@ mpact of Assumption Violations
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Synthetic Causal Data Generation with causally

Configurable properties:

Dataset size

Linear/nonlinear relationships
Gaussian/non-Gaussian noise
Confounders

Cycles
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Synthetic Causal Data Generation with causally

Configurable properties:

o Dataset size
@ Linear/nonlinear relationships
e Gaussian/non-Gaussian noise
o Confounders " 3 1
@ Cycles B 1. ’
* \}'\_9
5
Q
A - u
. [N} 0
<l w
%
I'd
3.
1,31 v

Figure 5: A causal graph with five nodes, generated using causally
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Synthetic Causal Data Generation with causally

0.05

0.00

Variable 2

—0.05

—-0.05 0.00 0.05
Variable 1

Figure 6: Dataset1280
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Synthetic Causal Data Generation with causally

0.05
_,i; 0.00
g
-0.05 i :
—-0.05 0.00 0.05
Variable 1
Figure 6: Dataset1280
dataset_.name num_rows num_cols noise_type linearity confounders cycles
dataset1279 20000 2 uniform nonlinear 1 0
dataset1280 20000 2 uniform nonlinear 1 1
dataset1281 30 3 normal linear 0 0
dataset1282 30 3 normal linear 0 1

Table 2: Dataset metadata
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Accuracy Metric

Record accuracy[4]
il W m o
T

7~ i 4 Tom
y i / «l
(a) Original (b) DirectLiNGAM
TP 3

TP+05(FP+FN) 4
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Find Accuracy For All Datasets

Use Fujitsu Causal Discovery on generated data

dataset_name noise_type linearity cycles F1

dataset790 normal nonlinear 1 0.667
dataset2629 normal linear 0 0.800
dataset2687 normal nonlinear 0 0.667
dataset2761 uniform linear 0 0.909
dataset2946 normal linear 1 0.750
dataset256 uniform nonlinear 1 0.000
dataset3754 uniform linear 1 0.600
dataset3815 uniform nonlinear 0 1.000

Table 3: Performance (F1 score) of different datasets.
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Sensitivity Analysis- Linear Model

R2 = .65

Coefficient Value

acyclic non-Gaussian linear
Features

Figure 8: Coefficients for the linear model predicting F1 score
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Sensitivity Analysis

Develop a scoring metric:

{0 : violates assumption

1 : does not violate assumption
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Sensitivity Analysis

Develop a scoring metric:

0 : violates assumption
1 : does not violate assumption

R = .3141(acyclic) + .2552(non-Gaussian) +.1602(linear) (1)
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Sensitivity Analysis

Develop a scoring metric:

{0 : violates assumption

1 : does not violate assumption

R = .3141(acyclic) + .2552(non-Gaussian) +.1602(linear) (1)

R
Reliability = —205 ~ Estimated F1
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Sensitivity Analysis - Example Dataset

acyclic: 0
== < non-Gaussian: 1

linear: 0

happiness
 =(cake)®
4 ot
CGN
Lo
4- “i‘ : 7 -
{ a1

Figure 9: Cats-DirectLiINGAM violations
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Sensitivity Analysis - Example Dataset

acyclic: 0

== < non-Gaussian: 1

* linear: 0
) R = .3141(acyclic) + .2552(non-Gaussian)
happiness
= (cake)? +.1602(linear)
:3141(0) +.2552(1) +.1602(0)
.2552,

-

R
S e

«
Figure 9: Cats-DirectLiINGAM violations
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Sensitivity Analysis - Example Dataset

acyclic: 0
== < non-Gaussian: 1

linear: 0

R = .3141(acyclic) + .2552(non-Gaussian)

happiness )
= (cake)? +.1602(linear)

: % = 3141(0) +.2552(1) +.1602(0)
LIRS S - 2552,

i T~

v e
A .2552
Figure 9: Cats-DirectLiINGAM violations ~ reliability = 7295 3498
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Grading Scale

acyclic non-Gaussian linear reliability grade

0 0 0 0.0000 F
0 0 1 0.2196 F
0 1 0 0.3498 F
0 1 1 0.5694 D
1 0 0 0.4306 F
1 0 1 0.6502 C
1 1 0 0.7804 B
1 1 1 1.0000 A

Table 4: Possible reliability scores and associated grades
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@ Detecting Assumption Violations
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Detecting Assumption Violations - Gaussianity

201 —— Ljnear fit

1.51
>1.01

0.51

001 ! . . !
0.00 0.25 050 075 1.00
X

(a) Uniform (non-Gaussian)
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Detecting Assumption Violations - Gaussianity

41
201 —— Ljnear fit
2,
1.54
> 1.0 > 0
0.5 —2]
—— Linear fit
0.01 | i i | -4 i i ‘ ‘
0.00 0.25 0.50 0.75 1.00 -5.0 -25 0.0 2.5 5.0
X X
(a) Uniform (non-Gaussian) (b) Gaussian
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Detecting Assumption Violations - Gaussianity

—— Linear fit

-5.0 -25 0.0 25 5.0
X

Figure 11: Gaussian
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Detecting Assumption Violations - Gaussianity

Success rate: 74.7% 4

—— Linear fit

-5.0 -25 0.0 25 5.0
X

Figure 11: Gaussian
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Detecting Assumption Violations - Gaussianity

Success rate: 74.7% 4
@ For each pair of variables, calculate 21
a line of best fit and record the
residuals s~ O
_27
—— Linear fit
—4

-5.0 -25 0.0 25 5.0
X

Figure 11: Gaussian
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Detecting Assumption Violations - Gaussianity

Success rate: 74.7% 4
@ For each pair of variables, calculate 21
a line of best fit and record the
residuals > 01
@ Perform a Shapiro-Wilk test on -2
these values [5]
T Linear fit

-5.0 -25 0.0 25 5.0
X

Figure 11: Gaussian
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Detecting Assumption Violations - Gaussianity

Success rate: 74.7% 4
@ For each pair of variables, calculate 21
a line of best fit and record the
residuals s~ O
@ Perform a Shapiro-Wilk test on -2
these values [5]
T Linear fit
© If any pair presents Gaussian noise: 50 -25 00 25 5.0
dataset — Gaussian X

Figure 11: Gaussian
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Detecting Assumption Violations - Linearity

—— Linear fit
41 —— Quadratic fit
2_
>
0_
_2—
0 5 10

X

Figure 12: non-linearity
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Detecting Assumption Violations - Linearity

Success rate: 68.4%
—— Linear fit
41 —— Quadratic fit
2_
>

0_

_2-

0 5 10

X

Figure 12: non-linearity
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Detecting Assumption Violations - Linearity

Success rate: 68.4%
— Linear fit
Fit a polynomial, of increasing degrees, to 4 — Quadratic fit
each pair of variables using an orthogonal
- 2_
basis [6]. >
0_
_2-
0 5 10

X

Figure 12: non-linearity
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Detecting Assumption Violations - Linearity

Success rate: 68.4%

— Linear fit
Fit a polynomial, of increasing degrees, to 41 — Quadratic fit
each pair of variables using an orthogonal
basis [6]. > 2]
A pair is defined as: 01
_2—
0 5 10

X

Figure 12: non-linearity
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Detecting Assumption Violations - Linearity

Success rate: 68.4%

— Linear fit

Fit a polynomial, of increasing degrees, to 41 — Quadratic fit
each pair of variables using an orthogonal
basis [6]. > 2]
A pair is defined as: 01

: —2

@ Nonlinear: degree 2-9
0 5 10

X
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Detecting Assumption Violations - Linearity

Success rate: 68.4%

— Linear fit
Fit a polynomial, of increasing degrees, to 41 — Quadratic fit
each pair of variables using an orthogonal
basis [6]. > 2]
A pair is defined as: 01
: —2
@ Nonlinear: degree 2-9
0 5 10
@ Linear: degree 1 X

Figure 12: non-linearity
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Detecting Assumption Violations - Linearity

Success rate: 68.4%

— Linear fit
Fit a polynomial, of increasing degrees, to 41 — Quadratic fit
each pair of variables using an orthogonal
basis [6]. > 2]
A pair is defined as: 01
: —2
@ Nonlinear: degree 2-9
0 5 10
@ Linear: degree 1 X

Figure 12: non-linearity
o Unrelated: degree 9
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Detecting Assumption Violations - Confoundedness

Success rate: 48.6%
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Success rate: 48.6%

If a pair of variables:
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Detecting Assumption Violations - Confoundedness

Success rate: 48.6%

If a pair of variables:
@ has a high correlation coefficient,
@ has no link found by DirectLiNGAM,
@ is not caused by other variables,

then the dataset is confounded.
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Detecting Assumption Violations - Confoundedness

Success rate: 48.6%

If a pair of variables:
@ has a high correlation coefficient,
@ has no link found by DirectLiNGAM,
@ is not caused by other variables,

then the dataset is confounded.

Not confounded | Confounded
Predicted not confounded 1712 1799
Predicted confounded 208 121

Table 5: Results of confoundedness test on generated data
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Detecting Assumption Violations - Cycles Test

Success rate: 36.4% — 63.6%
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Detecting Assumption Violations - Cycles Test

Success rate: 36.4% — 63.6%

To detect cycles:
@ Run DirectLiINGAM
@ Repeat, with prior knowledge, once for each variable

© For each potential relationship find:

e # of times allowed
e # of times predicted
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Detecting Assumption Violations - Cycles Test

Success rate: 36.4% — 63.6%

To detect cycles:
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Detecting Assumption Violations - Cycles Test

Success rate: 36.4% — 63.6%

To detect cycles:
@ Run DirectLiINGAM
@ Repeat, with prior knowledge, once for each variable

© For each potential relationship find:

e # of times allowed
e # of times predicted

@ Compare ratio to threshold

Acyclic | Cyclic
Predicted acyclic 38 561
Predicted cyclic 1882 | 1359

Table 6: Results of cyclicity test on generated data
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Detecting assumption violations - Finite Data

Success rate: 100%
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Detecting assumption violations - Finite Data

Success rate: 100%

Check for the proportion of columns to rows.
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Detecting assumption violations - Finite Data

Success rate: 100%

Check for the proportion of columns to rows.

p number of columns

number of rows
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Detecting assumption violations - Finite Data

Success rate: 100%

Check for the proportion of columns to rows.

p number of columns

number of rows

which means a smaller number fits the assumption better.
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@ Examples
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Does it work?

Using our tool on real data!




Real world data [7]

Altitude vs. Temperature Horsepower vs. MPG
Grade: 43% — F Grade: 78% — B
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Real world data [7]

Altitude vs. Temperature Horsepower vs. MPG
Grade: 43% — F Grade: 78% — B

What contributed to these scores?
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Real world data [7]

Altitude vs. Temperature Horsepower vs. MPG
Grade: 43% — F Grade: 78% — B

What contributed to these scores?

@ acyclic @ acyclic
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Real world data [7]

Altitude vs. Temperature Horsepower vs. MPG
Grade: 43% — F Grade: 78% — B

What contributed to these scores?

@ acyclic @ acyclic

@ Gaussian @ non-Gaussian
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Real world data [7]

Altitude vs. Temperature Horsepower vs. MPG
Grade: 43% — F Grade: 78% — B

What contributed to these scores?

@ acyclic @ acyclic
@ Gaussian @ non-Gaussian
@ nonlinear @ nonlinear
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Real world data

Ground truth: Altitude — Temperature Ground truth: Horsepower — MPG
Altitude Horsepower
-193.52 —0.1(1\
Temperature MPG
Figure 13: DirectLINGAM prediction: Figure 14: DirectLiINGAM prediction:
altitude vs. temperature dataset horsepower vs. mpg dataset
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Wine Quality

Grade: 78% — B
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Wine Quality

Grade: 78% — B

residual sugar

$2

chlorides: ~ 065 —itric acid

o)

20

-

> )
3
oo / &
S, / 2
3 s
e MY 0>

oY 3
sulphates

Figure 15: DirectLiINGAM prediction: wine

quality dataset
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Wine Quality

Grade: 78% — B

residual sugar

$2

chlorides: ~ 065 —itric acid

005’ %2,

\

o)

What contributed to this score?

@ acyclic

@ non-Gaussian

00

e

@ nonlinear )Y /

o 3
sulphates’

Figure 15: DirectLiINGAM prediction: wine

quality dataset
Discoverability 28



@ Future Work
@ Interface
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e Conditional discovery

Figure 16: Nonlinear becomes linear with
conditions
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e Conditional discovery

o Existing literature

Figure 16: Relevant papers [8, 9, 10, 11]
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e Conditional discovery

@ Peter-Clark Algorithm
o Existing literature @ Inductive Causation Algorithm
@ Fast Causal Inference Algorithm
@ Choosing an algorithm ° ICA-LINGAM
o Pairwise LINGAM

Table 7: Some other causal discovery
algorithms [12, 13]
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Hidden

Conditional discovery Input Q
Q/ \
/ Output
Existing literature E@ _. \
/ //"
@
/

\\

Yl /
/

Choosing an algorithm D VAR
260% /—" ‘
— / —

)

Figure 16: Find a neural net picture

/

Q
/

Machine learning
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Conditional discovery

Existing literature

Choosing an algorithm

Machine learning

@ Interface
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Interface

Complete: front-end of interface
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Interface

Complete: front-end of interface
Incomplete: integration
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Interface

Complete: front-end of interface
Incomplete: integration

Causal Discovery Al

Discover hidden causal relationships in your data using advanced DirectLiNGAM technology

Welcome to Causal
Discovery Al

Upload your data to discover hidden causal
relationships and get actionable insights.

Figure 16: Welcome screen

? Analysis Progress
o _J _J 3

Step 1: Upload Your Data

Upload your CSV fle to beg sal discovery analysis. Your data should contain numeric variables for best results.

Upload Your Dataset

Drag and drop your CSV file here or click to
browse

with numeric variables
CsV File

@@ Pregenddropfilehe Browsefiles
Limit

Figure 17: Upload data
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Interface

Causal Relationships Graph

ColorLegend

Comprehensive causal discovery results and insights

Analysis Overview

volatile_acidity

Reliability Score

78% @ B

Excellent

4 causal relationships found

quality

Figure 18: Reliability score Figure 19: Causal graph
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Conclusion

How can we enhance discoverability with modern causal Al?
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Conclusion

How can we enhance discoverability with modern causal Al?

We can enhance discoverability with modern causal Al by
establishing clear metrics for reliability.
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The End

Questions?
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DirectLINGAM Algorithm Details
Q Initialize:

e x: a p-dimensional random vector
U: variable subscripts of x

X: pxn data matrix of x's

K := & (ordered list of variables)
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DirectLINGAM Algorithm Details

Q Initialize:
e x: a p-dimensional random vector
e U: variable subscripts of x
e X: px n data matrix of x's
o K:= (ordered list of variables)
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DirectLINGAM Algorithm Details

Q Initialize:
e x: a p-dimensional random vector
e U: variable subscripts of x
e X: px n data matrix of x's
o K:= (ordered list of variables)
© Repeat until p—1 subscripts are appended to K:
@ Perform least squares regression of x; to x; Vi e U\K(i # ).
O Compute residual vectors r¥) and residual data matrix RY) Vje U~ K

Discoverability 37



DirectLINGAM Algorithm Details

Q Initialize:
e x: a p-dimensional random vector
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DirectLINGAM Algorithm Details

Q Initialize:
e x: a p-dimensional random vector
e U: variable subscripts of x
e X: px n data matrix of x's
o K:= (ordered list of variables)
© Repeat until p—1 subscripts are appended to K:
@ Perform least squares regression of x; to x; Vi e U\K(i # ).
@ Compute residual vectors r¥) and residual data matrix RY) Vje U\ K
@ Find x,,: the most independent variable

Xm = argjg&i\rk Tkerne/(xj; U\K)

where Tkernel = Ljeu,izj /T/T/(va r;(j))
© Append m to k.
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DirectLINGAM Algorithm Details

Q Initialize:
e x: a p-dimensional random vector
e U: variable subscripts of x
e X: px n data matrix of x's
o K:= (ordered list of variables)
© Repeat until p—1 subscripts are appended to K:
@ Perform least squares regression of x; to x; Vi e U\K(i # ).
@ Compute residual vectors r¥) and residual data matrix RY) Vje U\ K
@ Find x,,: the most independent variable

Xm = argjg&i\r}< Thernet (xj; U\K)
where Tiemer = Z/eU,i:tj W(Xh ri(j))

@ Append mto k.
© Append remaining variable to end of K
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DirectLINGAM Algorithm Details

Q Initialize:
e x: a p-dimensional random vector
e U: variable subscripts of x
e X: px n data matrix of x's
o K:= (ordered list of variables)
© Repeat until p—1 subscripts are appended to K:
@ Perform least squares regression of x; to x; Vi e U\K(i # ).
@ Compute residual vectors r¥) and residual data matrix RY) Vje U\ K
@ Find x,,: the most independent variable

Xm = argjg&i\rk Tkerne/(xj; U\K)

Where Tkerne/ = Z/GU,I’{/’ m(}g, rl-(j))
@ Append mto k.
© Append remaining variable to end of K

© Construct lower triangular matrix, B, estimating connection strengths, bj;, using
covariance-based regression. (LS or MLE)
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Linear Model

How to calculate a linear model [14]:
Let predictor variables xy, -, x, € R™1 where X = [x1°+Xp],
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How to calculate a linear model [14]:
Let predictor variables xi, -+, x, € R™1 where X = [xl'--xp], and a dependent variable
Y e R™1,
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Linear Model

How to calculate a linear model [14]:
Let predictor variables xi, -+, x, € R™1 where X = [xl'--xp], and a dependent variable

Y e R™L,
Then, observe the desired model with the coefficient 3 = 31, Bp:

Y=XB+e
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Linear Model

How to calculate a linear model [14]:
Let predictor variables xi, -+, x, € R™1 where X = [xl'--xp], and a dependent variable

Y e R™L,
Then, observe the desired model with the coefficient 3 = 31, Bp:

Y=XB+e

We wish to know the values of .
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Linear Model

How to calculate a linear model [14]:

Let predictor variables xi, -+, x, € R™1 where X = [xl'--xp], and a dependent variable
Y e R™1L,

Then, observe the desired model with the coefficient 3 = 31, Bp:

Y=XB+¢
We wish to know the values of .
Observe:
Y =Xp
XTy=Xx"X3

(X"™X)1xTy=p
Thus, we have found the coefficients, i.e., 5.

Discoverability 38
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