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Problem Statement

How can we enhance discoverability with modern causal AI?

Discoverability is the ability to find previously unknown reliable causal relationships,
or lack thereof, in correlational data.

Reliability can be measured by the statistical likelihood that a suggested relationship
holds true.
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Motivation

Patterns can be misleading:

Figure 1: Ice cream causes forest fires?[1]

Critical areas:

Healthcare

Education

Environmental science

Crime

Experiments can be:

Costly

Impractical

Unethical
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Tools

Fujitsu Causal Discovery

DirectLiNGAM
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DirectLiNGAM Overview

Causal inference algorithm [2]

x0 x1 x2 x3

0 1.5 3.4 1.3 0.1
1 2.6 3.5 1.6 0.8
2 1.2 3.4 1.3 0.6
3 1.7 3.5 1.5 0.7
4 1.2 3.4 1.3 0.1
5 1.7 3.5 1.5 0.8
6 1.5 3.4 1.3 0.9

Table 1: Multivariate data

Ð→

Figure 2: Causal graph
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DirectLiNGAM Assumptions

Linearity

Non-Gaussianity

Acyclicity

No hidden confounders

Infinite data
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DirectLiNGAM Assumptions

Linearity

Non-Gaussianity

Acyclicity

No hidden confounders

Infinite data

Figure 3: child = a ∗ parent + noise
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DirectLiNGAM Assumptions

Linearity

Non-Gaussianity

Acyclicity

No hidden confounders

Infinite data

Figure 3: Non-Gaussian distribution

Figure 4: Gaussian distribution
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DirectLiNGAM Assumptions

Linearity

Non-Gaussianity

Acyclicity

No hidden confounders

Infinite data

Figure 3: A directed acyclic graph
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DirectLiNGAM Assumptions

Linearity

Non-Gaussianity

Acyclicity

No hidden confounders

Infinite data

Figure 3: Confounders in causal relationships
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DirectLiNGAM Assumptions

Linearity

Non-Gaussianity

Acyclicity

No hidden confounders

Infinite data

“[DirectLiNGAM] is guaranteed to con-
verge to the right solution within a small
fixed number of steps if the data strictly
follows [these assumptions].”[2]
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DirectLiNGAM Breakdown

1 Create hierarchy

2 Find variable relationships [3]

K =
⎛
⎜⎜⎜
⎝

cake
cat

little outfits for a cat
happiness

⎞
⎟⎟⎟
⎠

Figure 3: Example relationships
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Fujitsu Causal Discovery

Fujitsu Causal Discovery = DirectLiNGAM + Conditions

(a) ’cat’ < 1 ∧ ’cake’ > 3 (b) ’little outfits for a cat’ < 1

Ô⇒ Fill gaps left by DirectLiNGAM
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Guiding Question

Q: How do we quantify reliability?
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Project Components

Impact of assumption violations

Detect violations

Create scoring metric
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Synthetic Causal Data Generation with causally

Configurable properties:

Dataset size
Linear/nonlinear relationships
Gaussian/non-Gaussian noise
Confounders
Cycles

Figure 5: A causal graph with five nodes, generated using causally
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Synthetic Causal Data Generation with causally

Figure 6: Dataset1280

dataset name num rows num cols noise type linearity confounders cycles

dataset1279 20000 2 uniform nonlinear 1 0
dataset1280 20000 2 uniform nonlinear 1 1
dataset1281 30 3 normal linear 0 0
dataset1282 30 3 normal linear 0 1

Table 2: Dataset metadata
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Accuracy Metric

Record accuracy[4]

(a) Original (b) DirectLiNGAM

F1 = TP

TP + 0.5(FP + FN) =
3

4
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Find Accuracy For All Datasets

Use Fujitsu Causal Discovery on generated data

dataset name noise type linearity cycles F1

dataset790 normal nonlinear 1 0.667
dataset2629 normal linear 0 0.800
dataset2687 normal nonlinear 0 0.667
dataset2761 uniform linear 0 0.909
dataset2946 normal linear 1 0.750
dataset256 uniform nonlinear 1 0.000
dataset3754 uniform linear 1 0.600
dataset3815 uniform nonlinear 0 1.000

Table 3: Performance (F1 score) of different datasets.
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Sensitivity Analysis- Linear Model

R2 = .65

Figure 8: Coefficients for the linear model predicting F1 score
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Sensitivity Analysis

Develop a scoring metric:

⎧⎪⎪⎨⎪⎪⎩

0 ∶ violates assumption

1 ∶ does not violate assumption

R = .3141(acyclic) + .2552(non-Gaussian) + .1602(linear) (1)

Reliability = R

.7295
= Estimated F1

Discoverability 16



Sensitivity Analysis

Develop a scoring metric:

⎧⎪⎪⎨⎪⎪⎩

0 ∶ violates assumption

1 ∶ does not violate assumption

R = .3141(acyclic) + .2552(non-Gaussian) + .1602(linear) (1)

Reliability = R

.7295
= Estimated F1

Discoverability 16



Sensitivity Analysis

Develop a scoring metric:

⎧⎪⎪⎨⎪⎪⎩

0 ∶ violates assumption

1 ∶ does not violate assumption

R = .3141(acyclic) + .2552(non-Gaussian) + .1602(linear) (1)

Reliability = R

.7295
= Estimated F1

Discoverability 16



Sensitivity Analysis - Example Dataset

Figure 9: Cats-DirectLiNGAM violations

Ô⇒
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

acyclic: 0

non-Gaussian: 1

linear: 0

R = .3141(acyclic) + .2552(non-Gaussian)
+ .1602(linear)

= .3141(0) + .2552(1) + .1602(0)
= .2552,

→ reliability = .2552

.7295
= .3498
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Grading Scale

acyclic non-Gaussian linear reliability grade
0 0 0 0.0000 F
0 0 1 0.2196 F
0 1 0 0.3498 F
0 1 1 0.5694 D
1 0 0 0.4306 F
1 0 1 0.6502 C
1 1 0 0.7804 B
1 1 1 1.0000 A

Table 4: Possible reliability scores and associated grades
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Detecting Assumption Violations - Gaussianity

(a) Uniform (non-Gaussian)

(b) Gaussian
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Detecting Assumption Violations - Gaussianity

(a) Uniform (non-Gaussian) (b) Gaussian
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Detecting Assumption Violations - Gaussianity

1 For each pair of variables, calculate
a line of best fit and record the
residuals

2 Perform a Shapiro-Wilk test on
these values [5]

3 If any pair presents Gaussian noise:

dataset → Gaussian

Figure 11: Gaussian
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Detecting Assumption Violations - Linearity

Nonlinear: degree 2-9

Linear: degree 1

Unrelated: degree 9

Figure 12: non-linearity
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Detecting Assumption Violations - Confoundedness

Success rate: 48.6%

If a pair of variables:

has a high correlation coefficient,

has no link found by DirectLiNGAM,

is not caused by other variables,

then the dataset is confounded.

Not confounded Confounded

Predicted not confounded 1712 1799

Predicted confounded 208 121

Table 5: Results of confoundedness test on generated data
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Detecting Assumption Violations - Cycles Test

Success rate: 36.4%→ 63.6%

To detect cycles:

1 Run DirectLiNGAM

2 Repeat, with prior knowledge, once for each variable
3 For each potential relationship find:

# of times allowed
# of times predicted

4 Compare ratio to threshold

Acyclic Cyclic

Predicted acyclic 38 561

Predicted cyclic 1882 1359

Table 6: Results of cyclicity test on generated data
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Detecting assumption violations - Finite Data

Success rate: 100%

Check for the proportion of columns to rows.

P = number of columns

number of rows
,

which means a smaller number fits the assumption better.
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Does it work?

Using our tool on real data!
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Real world data [7]

Altitude vs. Temperature
Grade: 43%→ F

What contributed to these scores?

acyclic

Gaussian

nonlinear

Horsepower vs. MPG
Grade: 78%→ B

acyclic

non-Gaussian

nonlinear
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Real world data

Ground truth: Altitude → Temperature

Figure 13: DirectLiNGAM prediction:
altitude vs. temperature dataset

Ground truth: Horsepower → MPG

Figure 14: DirectLiNGAM prediction:
horsepower vs. mpg dataset
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Wine Quality

Grade: 78%→ B

acyclic

non-Gaussian

nonlinear

Figure 15: DirectLiNGAM prediction: wine
quality dataset
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Future work

Conditional discovery

Existing literature

Choosing an algorithm

Machine learning

Interface

Figure 16: Nonlinear becomes linear with
conditions
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Future work

Conditional discovery

Existing literature

Choosing an algorithm

Machine learning

Interface

Figure 16: Relevant papers [8, 9, 10, 11]

Discoverability 29



Future work

Conditional discovery

Existing literature

Choosing an algorithm

Machine learning

Interface

Peter-Clark Algorithm

Inductive Causation Algorithm

Fast Causal Inference Algorithm

ICA-LiNGAM

Pairwise LiNGAM

Table 7: Some other causal discovery
algorithms [12, 13]
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Future work

Conditional discovery

Existing literature

Choosing an algorithm

Machine learning

Interface

Figure 16: Find a neural net picture
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Interface

Complete: front-end of interface

Incomplete: integration

Figure 16: Welcome screen Figure 17: Upload data
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Interface

Figure 18: Reliability score Figure 19: Causal graph
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Conclusion

How can we enhance discoverability with modern causal AI?

We can enhance discoverability with modern causal AI by
establishing clear metrics for reliability.
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The End

Questions?
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DirectLiNGAM Algorithm Details

1 Initialize:
x : a p-dimensional random vector
U: variable subscripts of x
X : p × n data matrix of x ’s
K ∶= ∅ (ordered list of variables)

2 Repeat until p − 1 subscripts are appended to K :
a Perform least squares regression of xi to xj ∀i ∈ U/K(i ≠ j).
b Compute residual vectors r (j) and residual data matrix R(j) ∀j ∈ U ∖K
c Find xm: the most independent variable

xm = arg min
j∈U/K

Tkernel(xj ;U/K)

where Tkernel = ∑i∈U,i≠j M̂I (xj , r (j)i )
d Append m to k.

3 Append remaining variable to end of K
4 Construct lower triangular matrix, B, estimating connection strengths, bij , using

covariance-based regression. (LS or MLE)
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Linear Model

How to calculate a linear model [14]:
Let predictor variables x1,⋯, xp ∈ Rn×1, where X = [x1⋯xp],

and a dependent variable
Y ∈ Rn×1.
Then, observe the desired model with the coefficient β = β1,⋯, βp:

Y = Xβ + ϵ

We wish to know the values of β.
Observe:

Y = Xβ

XTY = XTXβ

(XTX )−1XTY = β

Thus, we have found the coefficients, i.e., β.
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